
XMM-Newton Science Analysis System Page: 1

badpix

January 27, 2025

Abstract

The badpix task collects together pixels identified as ‘bad’ (whether ‘hot’, ‘dead’, ‘flickering’
etc.) and therefore as pixels containing no useful data. A badpix table, containing information on
the position and the type of defect of the bad pixels, is produced as an extension to either the input
raw events file or a copy of this file.

1 Instruments/Modes

Instrument Mode

EPIC MOS all
EPIC PN all
(RGS) (spectroscopy) (see com-

ments)

2 Use

pipeline processing yes
interactive analysis yes

3 Description

badpix collects together pixels identified as containing no useful data, and uses this information to
produce a badpix extension table to either the input raw events file or a copy thereof. Note that no
alteration of the actual events extension is performed.

A very important point regarding the bad pixels is that there are essentially three separate (though not
exclusive) sets of bad pixels that must be dealt with. These are (1) the bad pixels uplinked to the satellite
and eliminated on-board, (2) the bad pixels identified in the CCF but not uplinked, and (3) the additional
bad pixels associated with the particular observation in question. Sets (1) and (2) are contained within
the CCF (and in the case of MOS, within the ODF iteself - see below), and badpix deals with these first
two sets of bad pixels, though, if a file exists containing any badpix set (3) information (created using
the task badpixfind), then this information is accessed in addition (if requested).

22.0.0-9173c7d25-20250127



XMM-Newton Science Analysis System Page: 2

What badpix does is to create the badpix extension to the input raw events file (or to a copy thereof),
and fill this with the information regarding any or all of the badpix sets (1), (2) and (3) (from the
badpixfind output file).

The user will be able to specify which set(s) of bad pixels should be used to construct the badpix extension
(whether just (1), just (2), just (3), or any combination of these). Once this has been decided upon, the
badpix extension is constructed and appended to the input raw events file (or a copy), and filled with
the relevant information.

In cases where a badpixfind file is accessed (badpix set (3)), and either or both of the CCF badpix sets
(1 and/or 2), duplicity checking and purging of the badpixfind pixels is performed (see comments).

Command switches also exist to append a purely empty BADPIX table, or to append a BADPIX table
containing only those pixels within the input file X/Y window (see parameters and comments).

In the case of MOS, the task accesses the uplinked (set 1) bad pixels from the actual ODF data files of
the observation in question. These are then used in preference to any uplinked (set 1) bad pixels found
within the CCF. Non-uplinked (set 2) MOS bad pixels are taken from the CCF.

4 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

eventset yes string
input raw events set

getuplnkbadpix yes logical Y Y/N
get uplinked bad pixels (from CCF)?

getotherbadpix yes logical Y Y/N
get non-uplinked bad pixels (from CCF)?

getnewbadpix yes logical N Y/N
get new pixels from task badpixfind?

badpixset no string badpixfind.fits
output from badpixfind (for getnewbadpix = Y)

emptyextension no logical N Y/N
Create an empty BADPIX extension?

windowfilter no logical N Y/N
Just get pixels within input file X/Y window?

withoutset no logical N Y/N
Create new output file (BADPIX extension is appended to input if false)

outset no string out.fits
Name of optional output file (if withoutset=Y)

22.0.0-9173c7d25-20250127



XMM-Newton Science Analysis System Page: 3

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

badExtension (error)
No, invalid or incorrectly named extension in input events file

badInstrument (error)
Instrument not supported

noBadpixModes (error)
No badpix modes chosen

BPTcode (warning)
BadPixelTable code in PAH.FITS and BADPIX.CCF differ
corrective action: continue, probably the BADPIX.CCF is incorrect (too old), bad pixel positions
may be wrong

badBadpixfindFile (warning)
badpixfind file is incompatible with input file
corrective action: Continue, with getnewbadpix=N

overwriteBadpix (warning)
BADPIX extension already exists - overwriting
corrective action: Continue, with warning message

6 Input Files

1. Raw event list from epframes or emevents. Attributes read: INSTRUME QUADRANT CCDID CCDNODE

WINDOWX0 WINDOWY0 WINDOWDX WINDOWDY.

2. Output file from badpixfind (optional). Attributes read: TELESCOP INSTRUME CCDID EXP ID OBS ID

QUADRANT CCDNODE

7 Output Files

1. File as input (either the actual input file or a copy - see parameters) with a bad pixel extension
(named BADPIX) giving the RAWX/RAWY and extent in the Y direction of each bad pixel (or strip
thereof), the type of fault present, and the source of the pixel (i.e. whether from badpix sets 1, 2
or 3) (column names are RAWX, RAWY, YEXTENT, TYPE and BADFLAG). This file is next accessed by
epevents or emevents.

22.0.0-9173c7d25-20250127



XMM-Newton Science Analysis System Page: 4

8 Algorithm

subroutine badpix

* get input events, if required, make a copy of this file

* get instrument, datamode, ccdid and node from events file

* get badpix modes (1,2,3)?

* enter CCF, and get bad pixel list (from CCF)

* if mode3 (getnewbadpix), find size of mode3 file (output from

badpixfind), and check if compatible with events file

* check and purge mode3 file for double entries

* get total size of badpix table, combining modes 1,2 and 3

* check if badpix extension already exists, and if not, allocate columns

for badpix information

* fill columns with relevant mode1/mode2 (i.e.\ getuplnkbadpix/

getotherbadpix) information

* as above, for mode 3 pixels (if required)

* check mode 3 pixels against information in CCF

* purge mode 3 entries for doubles in CCF

* check each pixel for common (though not identical) entries

* if filterwindow mode, filter bad pixels for entries within X/Y window

* add extension to input events file, fill in badpix information

* add attributes (instrument, ccdid etc) and history information

end subroutine badpix

9 Comments

• The task was originally designed to handle RGS data also. The BADPIX extension here contains
the CHIPX/CHIPY chip-orientated co-ordinates of the bad pixels. Though this functionality still
exists, it is recommended to use the task rgsbadpix.

• The task checks for duplicity between any badpixfind input and bad pixels contained within the
CAL. Irrespective of whether CCF bad pixels are required to be input into the BADPIX extension
or not, the task gives general information as to CCF/badpixfind double entries. If entries from
the CCF and from badpixfind covering the same coordinates are required to be input into the
BADPIX extension, then the badpixfind entries are split and purged such that no RAWX/RAWY
coordinate has more than one entry (i.e. the CCF entries take precedent). Also the task checks
whether the badpixfind entries themselves have any overlapping pixels. If so, the badpixfind

data are purged, precedent being given to hot pixels over dead pixels (over flickering pixels).

• The task, via the parameter emptyextension=Y, produces an empty BADPIX extension. Also,
via the parameter windowfilter=Y, the task filters the bad pixels for those within the input file
WINDOW range (entries are adjusted if they lie across the WINDOW border). The default values
for both parameters are ‘N’.

• Information from the hardware groups is required regarding how the bad pixels will be handled on
board in timing and burst mode. The badpix task at the ground could, for example, use the same
badpix sets (1 and 2), as for the imaging modes, and add them as an extension to the raw event
file. Event flagging then has to be dealt with in the events tasks.

22.0.0-9173c7d25-20250127



XMM-Newton Science Analysis System Page: 5

10 Future developments

Future calibration developments may need to be incorporated into the task.

11 Examples

• badpix eventset=events.dat getnewbadpix=Y badpixset=badpixfind.fits (badpix extension, with up-
linked and non-uplinked CCF bad pixels [both by default] and within the file badpixfind.fits, ap-
pended to input events file).

• badpix eventset=events.dat getuplnkbadpix=N getotherbadpix=N getnewbadpix=Y badpixset=badpixfind.fits
withoutset=Y outset=newevents.dat (badpix extension, with just the bad pixels in badpixfind.fits
appended to a copy of the input events file [named newevents.dat]).

References

22.0.0-9173c7d25-20250127


